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The problem to design efficient heteronuclear decoupling sequences is studied using optimal control
methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that
makes it possible to design complex non-periodic decoupling sequences which are characterized by tens
of thousands of pulse sequence parameters. In contrast to conventional approaches based on average
Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers
the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory
of the density operator is tracked as closely as possible. The approach is demonstrated for the case of
low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conven-
tional sequences, significant gains in decoupling efficiency and robustness with respect to offset and
inhomogeneity of the radio-frequency field were found in simulations and experiments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Heteronuclear decoupling methods have a long history in NMR
spectroscopy [1–18]. The goal of broadband heteronuclear decou-
pling sequences is to collapse a spin I multiplet splitting by irradi-
ating a spin S that is coupled to I in order to simplify the spectra
and to increase the signal-to-noise ratio. At the same time, the
decoupling sequence should introduce only a minimal amount of
artifacts, such as decoupling sidebands. Furthermore, in order to
avoid undesirable sample heating or damage to the probe, the
radio frequency (rf) power of the decoupling sequence should be
as small as possible. This is of particular importance in medical
imaging or in vivo spectroscopy of humans. The earliest heteronu-
clear decoupling methods were based on cw irradiation [3] and
noise decoupling [4]. Significantly improved decoupling sequences
were found based on composite [1,2,5,7–9] or shaped [13–18]
inversion pulses in combination with highly compensated cycles
and supercycles [1,2,7,20–22]. Theoretical approaches that have
been used for the analysis and design of decoupling sequences in-
clude average Hamiltonian [6,23] and Floquet [18] theory. Here we
introduce a novel approach to decoupling where the decoupling
pulse sequence is obtained by optimally tracking the evolution of
a density matrix under a desired Hamiltonian. In particular we
use this method to optimally track the evolution of a decoupled
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Hamiltonian. We show that the optimal control methods intro-
duced in our previous work for transferring the state of the system
closest to a desired target state can be generalized to make the evo-
lution of the density matrix track a certain trajectory over an ex-
tended time period.

Recently, principles of optimal control theory [24] have found
numerous applications in magnetic resonance. Theoretical limits
for maximum heteronuclear transfer efficiency have been estab-
lished for the typical NMR setting, where rf amplitudes can be
much larger than heteronuclear couplings. Furthermore, in this
limit of strong pulses, time-optimal [25,26] and relaxation-opti-
mized [27,28] pulse sequences were derived, which achieve the
theoretical limits. In addition to analytical bounds for the strong
pulse limit, optimal-control based algorithms make it possible to
numerically explore the physical limits of polarization transfer effi-
ciency in realistic settings, where experimental limitations have to
be taken into account. The GRAPE algorithm [29,30] has been suc-
cessfully applied to problems in liquid-state NMR [31–38], solid-
state NMR [39], and quantum information processing [40,41]. In
the context of broadband heteronuclear decoupling, robust inver-
sion pulses with minimal rf power [38] are potential candidates
for inversion elements suitable for cyclic decoupling sequences.
Alternatively, optimal control methods could be used to optimize
decoupling elements that produce a desired effective Hamiltonian
or an effective propagator over a small time period as demon-
strated in [29,39,40]. However, both approaches do not use the full
potential of optimal control methods.

Here, we introduce a more general method to design non-peri-
odic, robust low-power decoupling sequences using tracking
methods [24,42]. These methods fall into two categories. The first
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Fig. 1. Schematic representation of the acquisition points Tk (with 0 6 k 6 N) and
the digitization of a heteronuclear decoupling sequence, consisting of M time slices
Dt ¼ tmþ1 � tm between two subsequent acquisition points. Rf amplitudes are
optimized for a total of N times M time slices. The density operator qð0Þ ¼ Ix evolves
forward in time and for each acquisition point, there is a costates kkðTkÞ ¼ Ix that is
evolved backward in time. As shown in Appendix 3, the backward evolution of the N
costates kk can be reduced to a single backward evolution of the combined costate
K.
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one attempts to exactly follow a desired output by some inversion
method [43–47]. In the second approach, one tries to find an input
control field that will approximate a desired output trajectory.
These approximate methods can be constructive [48,49] or they
can be based on the solution to an optimal control problem [50–
54]. The application of the latter approach to heteronuclear decou-
pling sequences is presented in the following. The complexity
resulting from considering non-periodic decoupling sequences
can be handled with reasonable computational cost using efficient
numerical methods. Potential applications range from NMR spec-
troscopy to quantum information processing. Here, we focus on
the specific example of low-power decoupling sequences for
in vivo applications, in order to illustrate the improved perfor-
mance that can be achieved based on the presented optimal track-
ing approach.

2. Theory

We consider a system consisting of two heteronuclear spins 1/2
labeled I and S. We assume that spin I is observed while spin S is
irradiated by a decoupling sequence. In a doubly rotating frame,
the Hamiltonian has the form

HðtÞ ¼HI
off þHS

off þHIS
J þHS

rf ðtÞ; ð1Þ

with the offset term of spin I

HI
off ¼ 2pmI Iz; ð2Þ

the offset term of spin S

HS
off ¼ 2pmSSz; ð3Þ

the heteronuclear J coupling term

HIS
J ¼ 2pJSzIz; ð4Þ

and the rf term representing the decoupling sequence

HS
rf ðtÞ ¼ 2p�fuxðtÞSx þ uyðtÞSyg: ð5Þ

The controls uxðtÞ and uyðtÞ are the nominal amplitudes of the x and
y components of the rf field in the doubly rotating frame and � is a rf
scaling factor, which takes into account rf inhomogeneity and mis-
calibration effects. As HI

off commutes with the terms HS
off , H

IS
J , and

HS
rf ðtÞ, the offset effect of spin I can be separated and it is sufficient

to consider the simplified Hamiltonian

H0ðtÞ ¼HS
off þHIS

J þHS
rf ðtÞ; ð6Þ

for the analysis and design of heteronuclear decoupling sequences,
i.e. spin I can be assumed to be on resonance. We assume the initial
density operator to be

qðt0Þ ¼ Ix: ð7Þ

In the absence of a decoupling sequence, HS
rf ðtÞ ¼ 0, the offset term

HS
off commutes both with qðt0Þ and with HIS

J and hence the evolu-
tion of the density operator is simply governed by the coupling term
HIS

J :

qðtÞ ¼ Ix cosðpJtÞ þ 2IySz sinðpJtÞ; ð8Þ

and the cosine modulation of the detectable operator Ix results in a
doublet with splitting J in the resulting spectrum after Fourier
transformation of the time-domain signal corresponding to the
expectation value hIxiðtÞ. In typical experimental settings, the signal
is not detected continuously, but only at a number of discrete time
points Tk. As illustrated in Fig. 1, the digitization of the decoupling
sequence (with time slices Dt ¼ tmþ1 � tm) is typically finer than the
digitization of the detected signal (with time intervals
DT ¼ Tkþ1 � Tk) and M ¼ DT=Dt is the number of time slices Dt
per interval DT. Hence, if the signal is detected at the N þ 1 time
points T0; . . . ; TN , the entire decoupling sequence consists of NM
time slices and is characterized by NM control amplitudes uxðjÞ
and by NM control amplitudes uyðjÞ with 1 6 j 6 NM. In the case
of perfect decoupling, the desired evolution of the density operator
is

qdðTkÞ ¼ Ix for 0 6 k 6 N; ð9Þ

i.e. the expectation value hIxiðtÞ of the detection operator is con-
stant at all time points Tk where a signal is detected. In this case,
no splitting is observed in the resulting spectrum after Fourier
transformation. Here, we demonstrate how to design heteronu-
clear decoupling sequences by tracking this desired evolution of
the density operator at specified time points Tk, where the signal
is detected during the free induction decay. The optimal tracking
problem can be efficiently solved using an extended version of the
GRAPE algorithm [29]. In the original version of GRAPE, the qual-
ity factor for state to state transfer is defined as the projection of
the final density operator qðTÞ onto a desired target operator C.
The gradient of this quality factor with respect to the control
amplitudes (i.e. the pulse sequence parameters) can be calculated
efficiently from the density operator qðtÞ that evolves forward in
time starting from qð0Þ and a so-called costate operator kðtÞ that
evolves backward in time starting from kðTÞ ¼ C. In the case of
heteronuclear decoupling, the projection of the density operator
on a series of desired target operators CðTkÞ ¼ Ix is relevant for
all time points Tk at which the signal is detected. As shown in
the following, in this case the gradient of the corresponding qual-
ity factor for decoupling can be calculated efficiently from the
density operator qðtÞ and a series of costate operators kkðtÞ that
evolve backward in time starting from kkðTkÞ ¼ CðTkÞ ¼ Ix (c.f.
Fig. 1).

The quality of decoupling can be quantified by the signal ampli-
tude of the decoupled resonance line in the frequency domain. In
addition, the amplitude of decoupling sidebands should be as small
as possible. As according to the simplified Hamiltonian H0ðtÞ (c.f.
Eq. (6)) spin I can be assumed to be on-resonance, the amplitude
of the spin I spectrum at zero frequency is simply given by the Fou-
rier transform of the free induction decay at frequency mI ¼ 0. The
detected discrete time-domain signal is

sk ¼ hIxiðTkÞ ¼ TrfIxqðTkÞg; ð10Þ
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i.e. the expectation value of Ix at the time points Tk. As Ix is Hermi-
tian, i.e. Ix ¼ Iyx, Eq. (10) can also be written in the form

sk ¼ TrfIyxqðTkÞg ¼ hIx j qðTkÞi; ð11Þ

i.e. as the projection of the density operator qðTkÞ onto the detection
operator Ix [29,55]. For the typical case of linear sampling, the time
points Tk are evenly spaced over the acquisition time Tacq and the
dwell time DT ¼ Tkþ1 � Tk is given by Tacq=N, where N þ 1 is the
number of detected time points. (In the case of nonlinear sampling,
the time points Tk can be chosen according to the desired sampling
scheme.) The discrete Fourier transform Sl of the time-domain sig-
nal amplitudes sk has the form [55]

Sl ¼
1

N þ 1

XN

k¼0

sk expf�i2pkl=ðN þ 1Þg: ð12Þ

Hence the relevant quality factor representing the amplitude of a
decoupled on-resonance signal in the spin I spectrum for a given
rf scaling factor � (c.f. Eq. (5)) and offset mS is given by Eq. (12) for
l ¼ 0:

/ð�; mSÞ ¼ S0ð�; mSÞ ¼
1

N þ 1

XN

k¼0

skð�; mSÞ

¼ 1
N þ 1

XN

k¼0

hIx j qð�; mS; TkÞi: ð13Þ

The overall performance function U for a decoupling sequence can
be defined as the quality factors /ð�; mSÞ averaged over all offsets
mS and rf scaling factors � of interest. For simplicity, here we assume
an equal weight for all offsets and scaling factors, resulting in the
overall performance function

U ¼ 1
N�Nm

XN�
p¼1

XNm

q¼1

/ �ðpÞ; mðqÞS

� �
; ð14Þ

with N� discrete rf scaling factors �ðpÞ and Nm discrete offsets mðqÞS that
are evenly spaced in the desired range of rf scaling factors and offset
frequencies for a given application.

In principle, the gradient dU=duaðjÞ (for a ¼ x and y) of the over-
all performance function U with respect to the 2NM control ampli-
tudes uaðjÞ could be calculated using the difference method, in
which dU=duaðjÞ is approximated by DU=DuaðjÞ, where
DU ¼ UðuaðjÞ þ DuaðjÞÞ �UðuaðjÞÞ. However, with the help of opti-
mal control methods the same gradient can be calculated orders
of magnitude faster by using the known equation of motion for
the density operator. This makes it possible to optimize
entire non-cyclic decoupling sequences with a very large number
of pulse sequence parameters (i.e. control amplitudes uaðjÞ) from
scratch.

Following the approach described in [29], general analytical
expressions for the gradient dU=duaðjÞ to first order in Dt are de-
rived in Appendix 1 for the case of an arbitrary relaxation matrix.
If the relevant terms of the density operator relax with similar
rates, simplified expressions for dU=duaðjÞ can be derived, as shown
in Appendix 2. This simple case is assumed in the following in or-
der to demonstrate the tracking approach for heteronuclear decou-
pling. Here we focus on the case where the dynamics of the density
operator qðtÞ under the Hamiltonian H0ðtÞ (c.f. Eq. (6)) is restricted
to the subspace spanned by the operators Ix, 2IySx, 2IySy, 2IySz and
where these terms all decay with the same relaxation rate j. As
shown in Appendix 2, in this case the general form of the gradient
for the quality factor /ð�; mSÞ (c.f. Eq. (13)) with respect to the con-
trol amplitudes uxðjÞ and uyðjÞ of all time slices ð1 < j 6 MNÞ as de-
rived in Appendix 1 simplifies to
d/ð�; mSÞ
duaðjÞ

¼ 1
N þ 1

X
k>l

dsk

duaðjÞ

¼ i 2p�Dt
1

N þ 1
�
X
k>l

expf�j Tkg Sa q0ðtjÞ; k0kðtjÞ
� ���� �

¼ i 2p�Dt
1

N þ 1
Sa q0ðtjÞ;KðtjÞ
� ���� �

; ð15Þ

where a ¼ x or y. Here

q0ðtjÞ ¼ Uj . . . U1 qðt0Þ Uy1 . . . Uyj ; ð16Þ

is the density operator at time point tj that is obtained by unitarily
evolving the initial density operator qð0Þ ¼ Ix forward in time. We
call

k0kðtjÞ ¼ Uyjþ1 . . . UykM CðTkÞ UkM . . . Ujþ1; ð17Þ

the kth costate at time point tj that is obtained by unitarily evolving
the target or detection operator CðTkÞ ¼ Ix backward in time (c.f.
Appendix 2). In this simplified model, all relaxation effects are con-
tained in the damping term expf�j Tkg. The integer l ¼ bj=Mc is the
truncated value (also called floor function or integral value) of the
ratio j=M, i.e. the number of complete intervals DT before the jth
time slice. The condition k > l for the summation in Eq. (15) reflects
the fact that the control amplitudes uxðjÞ and uyðjÞ in the jth time
slice cannot affect the detected signal at earlier detection points.
The operator KðtjÞ in Eq. (15) is defined as

KðtjÞ ¼
X
k>l

expf�j Tkg k0kðtjÞ; ð18Þ

and can efficiently be calculated for all time points t0 6 tj 6 TN as
detailed in Appendix 3.

In the case discussed here, where under the action of H0ðtÞ (c.f.
Eq. (6)) the relevant dynamics of the density operator qðtjÞ and the
costate operators kkðtjÞ is restricted to the subspace spanned by ba-
sis operators 2IySx, 2IySy, 2IySz, and Sx, the calculation of unitary
evolution in this subspace can further be significantly accelerated
by introducing reduced four-dimensional state vectors (c.f. Appen-
dix 4) [56–58]. In analogy to the three-dimensional Bloch vector
representation of the density operator for a single uncoupled spin,
the expectation values of the terms 2IySx, 2IySy, 2IySz, and Ix, form
the elements of a four-dimensional vector that captures the
dynamics of the density operator that is relevant for the simulation
and optimization of heteronuclear decoupling sequences. In
Appendix 4, the reduced state and costate vectors ~q and~kk as well
as ~K are defined and an explicit form of the corresponding reduced
propagator UðjÞ [56–58] for each time slice j is given in the Supple-
mentary material.

Finally, the gradient for the overall quality function U (c.f. Eq.
(14)) is given by the averaged gradients d/ð�; mSÞ=duaðjÞ:

dU
duaðjÞ

¼ 1
N�Nm

XN�
p¼1

XNm

q¼1

d/ �ðpÞ; mðqÞS

� �
duaðjÞ

: ð19Þ

The performance function U can be increased by following this gra-
dient, i.e. if we choose

uaðjÞ ! uaðjÞ þ e
dU

duaðjÞ
; ð20Þ

where e is a small step size. This forms the basis of the following
generalized version of the GRAPE algorithm [29] for optimal track-
ing of a desired evolution of the density operator, which can be
readily applied to the problem of efficient and robust low-power
heteronuclear decoupling.
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For the case of uniform relaxation rates j considered here, the
basic GRAPE tracking algorithm based on the reduced four-dimen-
sional state and costate vectors (c.f. Appendix 4) can be summa-
rized as follows:

(1) Guess initial controls uxðjÞ and uyðjÞ for 1 6 j 6 NM.
(2) Starting from ~qð0Þ ¼ ð0;0;0;1ÞT , calculate ~q0ðtjÞ for

1 6 j 6 NM using Eq. (45).
(3) Starting from ~KðTNÞ ¼ expf�j TNgð0;0;0;1ÞT , calculate ~KðtjÞ

for 1 6 j 6 NM using Eq. (52).
(4) Calculate d/ð�ðpÞ; mðqÞS Þ=duaðjÞ for 1 6 j 6 NM using Eqs. (50)

and (51).
(5) Repeat steps 2–4 for all scaling factors �ðpÞ and offsets mðqÞS

and calculate dU=duxðjÞ and dU=duyðjÞ using Eq. (19).
(6) Update the 2NM control amplitudes uxðtjÞ and uyðtjÞ accord-

ing to Eq. (20).
(7) With these as the new controls, go to step 2.

The algorithm is terminated if the change in the performance
index U is smaller than a chosen threshold value. In practice,
the gradient information (Eq. (19)) can be used in more general
optimizing algorithms for faster convergence, such as conjugate
gradient or quasi-Newton methods. For general relaxation super-
operators, the algorithm can be modified using the general form
of the gradient dU=duaðjÞ given in Appendix 1. The rf power of
the decoupling sequence can be minimized or fixed as described
in [29,38]. The maximum rf amplitude umax can be limited by reset-
ting the amplitude to the maximum amplitude if it is exceeded
after step 6 [29,31]. If a constant rf amplitude u0 is desired [35],
the update rule of Eq. (20) for the rf amplitudes uxðjÞ and uyðjÞ
can be replaced by the corresponding update rule for the rf phases
uðjÞ:

uðjÞ ! uðjÞ þ e
dU

duðjÞ ; ð21Þ

with

dU
duðjÞ ¼ u0 �

dU
duxðjÞ

sin uðjÞ þ dU
duyðjÞ

cos uðjÞ
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Fig. 2. For the offset range of 500 Hz 6 mS 6 500 Hz and no rf scaling ð� ¼ 1Þ, the
decoupling quality U (normalized relative to the perfectly decoupled peak
amplitudes) is shown as a function of the nominal rf amplitude u0 for various
decoupling schemes. In (A) and (B), the solid circles represent quality factors of
tracking-based, non-periodic decoupling sequences optimized for the total acqui-
sition time Tacq consisting of N ¼ 128 periods DT ¼ 1 ms. (A) Also shows quality
factors of periodic decoupling sequences, which consist of tracking-based basis
sequences with durations of 64 ms (open circles), 32 ms (solid square), 16 ms (open
squares), 8 ms (solid diamonds), 4 ms (open diamonds), 2 ms (solid trinagles) and
1 ms (open triangles). For comparison, the performance of MLEV-16 (open
diamonds) [5] and WALTZ-16 (open squares) [7] is shown in (B) as a function of
the nominal rf amplitude u0.
3. Pulse sequence optimizations

In order to demonstrate the spin-tracking approach for the
development of efficient heteronuclear decoupling sequences and
to compare their performance with state-of-the-art experiments,
we focus on experimental settings typical for in vivo applications
[19]. Maximum suitable rf amplitudes for human applications are
on the order of 500 Hz at 4 T.

In this low power case, the best known sequences are MLEV-16
[5] (with a decoupling bandwidth of �435 Hz) and WALTZ-16 [7]
(with a decoupling bandwidth of �410 Hz), which outperform
other known decoupling sequences, including sequences based
on adiabatic pulses [19]. In our study, we set the desired decou-
pling bandwidth to 1 kHz, i.e. �500 Hz 6 mS 6 500 Hz. This offset
range was digitized in steps of 50 Hz, resulting in Nm ¼ 21 offset
points. As in [19], we assumed a linewidth of 6 Hz, corresponding
to a transverse relaxation time of T2 ¼ 1=ðp6 HzÞ ¼ 53 ms and a
corresponding relaxation rate j ¼ 1=T2 ¼ 18:8 s�1. For the optimi-
zations, we assumed a heteronuclear coupling constant of
J ¼ 140 Hz which represents an approximate value for sp3 hybrid-
ized CHn groups that was also used in the recent comparative study
of various decoupling sequences [19]. We assumed a dwell time DT
of 1 ms (corresponding to a spectral range of 1 kHz for spin I) and
N ¼ 128 time steps DT , resulting in a total acquisition time
of 128 ms. Each interval DT between two detection points was
partitioned into M ¼ 40 time slices with Dt ¼ 25 ls. Hence, a com-
plete non-periodic decoupling sequence consists of NM ¼ 5120
time slices, i.e. there is a total of 10,240 control parameters uxðjÞ
and uyðjÞ with 1 6 j 6 NM ¼ 5120 to be optimized. Here, we lim-
ited the maximum rf amplitude and the optimizations resulted in
decoupling sequences in which during virtually all time slices Dt
the maximum allowed nominal rf amplitude umax was reached.
We therefore reoptimized the resulting sequences enforcing a con-
stant nominal rf amplitude u0 ¼ umax. This resulted in purely
phase-modulated decoupling sequences, which can be imple-
mented experimentally more conveniently and e.g. do not require
linear amplifiers. Optimizations starting with different random ini-
tial pulse sequences resulted in different decoupling sequences but
with similar performance. Typical durations of the optimization of
a tracking-based decoupling sequence were on the order of 16
hours on a PC.

To explore the achievable quality of decoupling as a function of
the nominal rf amplitude u0 (assuming � ¼ 1), we optimized a
series of ten tracking-based decoupling sequences for
0 Hz < u0 6 500 Hz (c.f. solid circles in Fig. 2A and B). Reasonable
decoupling efficiency ðU > 0:9Þ is found if u0 is on the order of
360 Hz or larger. We also optimized shorter basis sequences of
duration 64 ms (open circles), 32 ms (solid square), 16 ms (open
squares), 8 ms (solid diamonds), 4 ms (open diamonds), 2 ms (solid
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Fig. 3. Phase modulation /ðtÞ of the non-periodic TRACK-1 heteronuclear decou-
pling sequence for a total acquisition time Tacq of 128 ms (A) and of the periodic
MLEV-16 sequence [5] (B) with a nominal rf amplitude u0 ¼ 400 Hz. The individual,
periodically applied MLEV-16 supercycles (with a duration of 16=u0 ¼ 40 ms) are
indicated by dashed vertical lines.
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triangles) and 1 ms (open triangles) and Fig. 2A shows the resulting
decoupling quality if these shorter basis sequences are repeated
periodically during the entire acquisition time of 128 ms. While
the decoupling efficiency for a single application of these numeri-
cally optimized basis sequences of short durations is monotoni-
cally and smoothly increasing for increasing nominal rf
amplitude (data not shown), the erratic variations of the decou-
pling efficiency as a function of u0 in Fig. 2A reflect the fact that
small error terms may or may not accumulate coherently if these
basis sequences are simply periodically repeated. The simulations
show increasing decoupling efficiency with increasing duration of
the basis sequence and the best tracking-based decoupling effi-
ciency is achieved by the non-periodic decoupling sequences (solid
circles). For comparison, the performance of the MLEV-16 (open
diamonds) [5] and WALTZ-16 (open squares) [7] sequences is
shown in Fig. 2B as a function of the nominal rf amplitude u0. These
decoupling sequences consist of periodically repeated supercycles
of duration 16=u0 and 24=u0 for MLEV-16 and WALTZ-16, respec-
tively. For example, for a nominal rf amplitude u0 ¼ 200 Hz, the
duration of the WALTZ-16 supercycle is 120 ms (corresponding al-
most to the entire duration of the detection period), whereas for
u0 ¼ 500 Hz the duration of the WALTZ-16 cycle is 48 ms.

After these initial studies, where for simplicity an ideal rf scal-
ing factor of � ¼ 1 was assumed, we proceeded to optimize track-
ing-based decoupling sequences that are robust with respect to rf
inhomogeneity, which can be substantial for in vivo applications
depending on rf coil geometry. As rf amplitudes of less than
500 Hz are desirable, we chose a challenging test case correspond-
ing to a nominal rf amplitude u0 of only 400 Hz and an rf scaling
factor � between 0.7 and 1.0, resulting in actual rf amplitudes
mrf ¼ �u0 in the range 280 Hz 6 mrf 6 400 Hz. The rf scaling factor
�was digitized in steps of 0.03, resulting in N� ¼ 11 discrete values
(c.f. Eq. (5)). For a comparison of different experimental settings, it
is convenient to express not only the rf scaling factor � ¼ mrf =u0 but
all relevant frequency parameters for the optimization problem

relative to u0 (or relative to urms ¼
PNM

j¼1 u2
x ðjÞ þ u2

yðjÞ
� �

=NM
n o1=2

for decoupling sequences with variable rf amplitudes if the rf
power is limited). In terms of these unitless parameters, the chosen
optimization problem corresponds to a relative decoupling band-
width of DmS=u0 ¼ 1000 Hz=400 Hz ¼ 2:5, a relative heteronuclear
J coupling J=u0 ¼ 140 Hz=400 Hz ¼ 0:35, a relative sampling fre-
quency ðDTÞ�1

=u0 ¼ ð1 msÞ�1
=400 Hz ¼ 2:5, a relative acquisition

time Tacq=u�1
0 ¼ 128 ms=2:5 ms ¼ 51:2 and rf scaling factors

� ¼ mrf =u0 in the range 0:7 6 � 6 1.
Fig. 3A shows the phase modulation /ðtÞ of a resulting tracking-

based, non-periodic decoupling sequence which we will refer to as
TRACK-1 in the following and which is available in electronic form
in the Supplementary material and at http://www.org.chemie.tu-
muenchen.de/glaser/Downloads.html. For comparison, the peri-
odic phase modulation of the MLEV-16 decoupling sequence with
the same nominal rf amplitude of u0 ¼ 400 Hz (and a correspond-
ing duration of a MLEV-16 supercycle of 16=u0 ¼ 40 ms) is shown
in Fig. 3B. In Fig. 4, examples of simulated FIDs (without damping)
and the corresponding Fourier transformed spectra (after a damp-
ing of the FID corresponding to a linewidth of 6 Hz) are shown for
offsets mS ¼ �500, 0, and 500 Hz for TRACK-1, MLEV-16 [5] and
WALTZ-16 [7]. For all offsets, the undamped FID of the TRACK-1 se-
quence shows the largest amplitude and the least modulations and
consequently yields the largest decoupled signal and the smallest
sideband amplitudes compared to conventional decoupling se-
quences. Scaled figures with additional offsets are shown in the
Supplementary material to make the detailed structure of the side-
bands more visible. A more comprehensive view of the theoretical
and experimental decoupling quality as a function of relative offset
mS=u0 and rf scaling � is given in Figs. 5 and 6 for TRACK-1, MLEV-16
and WALTZ-16. In these figures, the range �1:25 6 mS=u0 6 1:25
and 0:7 6 � 6 1 for which the TRACK-1 decoupling sequence was
optimized is indicated by a dashed rectangle. Fig. 5 shows simu-
lated and experimental signal amplitudes S0 corresponding to the
quality factor /ð�; mSÞ (c.f. Eq. (13)) and Fig. 6 shows the amplitude
of the largest decoupling sidebands. Although the TRACK-1 se-
quence was specifically optimized for a dwell time DT of 1 ms (cor-
responding to a spectral width of 1=DT of 1 kHz), the sequence also
works well for shorter dwell times (and correspondingly larger
spectral widths). This is expected as the rf amplitude and offset
range of spin S limit potential modulations of the decoupled FID
(and of corresponding decoupling sidebands) to be on the order
of about 500 Hz or less. In the experiments for Figs. 5 and 6, the
I � S spin system was represented by the 1H–13C moiety of 13C so-
dium formate dissolved in D2O. In this molecule, the heteronuclear
1H–13C coupling constant J0 ¼ 195 Hz is a factor of 1.39 larger than
the coupling constant J ¼ 140 Hz (typical for sp3 hybridized CHn

groups) that was used in the optimizations and simulations. In or-
der to make the experimental results directly comparable to the
simulations, we scaled the experimental parameters such as to
have the same relative values of J0=u00, ðDT 0Þ�1

=u00, and T 0acq=u0�1
0 ,

resulting in u00 ¼ 557 Hz, and DT 0 ¼ 0:71 ms. The experimental sig-
nal amplitudes are normalized relative to a reference experiment
using on-resonance MLEV-16 decoupling with an rf amplitude of
2 kHz. The experiments were performed on a Bruker AC 200 spec-
trometer operating at a Larmor frequency of 200 MHz for 1H and
50 MHz for 13C. The residual water (HDO) signal was suppressed
by presaturation and no digital filtering was used in the experi-
ments. Both in the simulations and in the experiments, TRACK-1,
MLEV-16, and WALTZ-16 decoupling sequences were applied in
synchronized mode, i.e. each decoupling sequence was started at
the beginning of the acquisition period. Zero filling to 64 k was
used prior to Fourier transformation. For each decoupling
sequence, experimental spectra were acquired for 27 rf scaling
factors in the range between 0 and 1.625 u0 by changing the atten-
uation setting of the 13C decoupling channel without changing the
timing of the sequences. For each scaling factor, 23 experiments
were performed for offsets m0S in the range between �1:375 u0

http://www.org.chemie.tu-muenchen.de/glaser/Downloads.html
http://www.org.chemie.tu-muenchen.de/glaser/Downloads.html
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and 1:375 u0. Hence each subplot in Figs. 5 and 6 represent a total
of 621 experiments. A reasonable match is found between simula-
tions and experiments. Remaining differences can be attributed to
experimental imperfection, such as rf inhomogeneity of about ±5%.
In the target range of offset and rf scaling, the TRACK-1 sequence
performs markedly better than all known conventional sequences,
both in terms of signal amplitude and sideband intensity. As
expected [19], MLEV-16 performs slightly better than WALTZ-16
under these conditions. For TRACK-1 and MLEV-16, cross sections
(for � ¼ 0:87, 0.79, and 0.71) of the plots of Fig. 5 are shown in
Fig. 7 to provide a better comparison of the decoupled signal
amplitudes. In the simulations as well as in the experimental spec-
tra, the TRACK-1 decoupling sequence resulted in larger signal
amplitudes and in a significant increase of the decoupling band-
width by more than 50%.

We also applied the TRACK-1 sequence for 13C-decoupling in an
HSQC experiment of a=b-D-glucose dissolved in D2O at a 1H fre-
quency of 200 MHz. The resulting two-dimensional spectrum is
shown in Fig. 8A. Fig. 8B shows the corresponding spectrum for
MLEV-16 decoupling. In this sample, the heteronuclear 1H–13C
coupling constants are approximately 140 Hz, corresponding to
the value used in the optimization. In both experiments, a nominal
rf amplitude for decoupling of 400 Hz was used, corresponding to a
duration of 1.25 ms for an inversion pulse. The 13C resonances of
C2, C3, C4, C5, and C6 are in the spectral range between 59 and
79 ppm. This frequency range corresponds to the optimized decou-
pling bandwidth of 1 kHz and the 13C transmitter frequency was
set to the center of this chemical shift range at 69 ppm. Four dis-
tinct groups of cross peaks for the two anomers are found (cross
peaks of C3 and C5 are overlapping). The gains of the corresponding
integrated cross peak amplitudes for TRACK-1 versus MLEV-16
decoupling were 2% ðC4Þ, 9.5% ðC2Þ, 16% ðC3=C5Þ, and 25% ðC6Þ. As
expected from the simulated and experimental data shown in
Fig. 5, the largest gains are found for the C3=C5 and C6 cross peaks
(see cross sections in Fig. 8C), which have the largest offsets rela-
tive to the 13C transmitter frequency.
4. Discussion and conclusion

The most important criterion for efficient decoupling is the
amplitude of the decoupled signals. The presented spin-tracking
approach is a natural and direct consequence of this criterion.
The efficient calculation of high-dimensional gradients for tens of
thousands of pulse sequence parameters makes is possible to opti-
mize non-periodic decoupling sequences for the entire duration of
the acquisition time. Although the phase modulation of the TRACK-
1 sequence appears to be stochastic (c.f. Fig. 3A), it is important to
note that this is not the case. In contrast to the technique of pseu-
do-random phase modulation, or noise decoupling [4], tracking-
based decoupling sequences such as TRACK-1 are deterministic se-
quences with well defined trajectories of the spins for the desired
range of offsets and rf scaling factors during the entire duration of
the detection period. As demonstrated both by simulations and
experiments, this can provide significantly better performance
than previously known decoupling sequences. In the tracking ap-
proach, imperfections that cannot be compensated for on a short
time scale do not accumulate but can be corrected on a longer time
scale, taking into account the characteristic relaxation rates of the
spin system. The presented tracking approach takes into account
the fact that the rf amplitudes during a given time slice of the
decoupling sequence affect the trajectory of the density operator
and hence the detected signal not only for the next, but for all fol-
lowing time points. Conversely, in the optimization algorithm, the
signal amplitudes of all following detection points have an influ-
ence on the rf parameters of each time slice, weighted by relaxa-
tion effects. (This is in contrast to algorithms that take only into
account the next detection point [59], which is in general not opti-
mal, because the sequence that leads to the best result at Tkþ1 is not
necessarily the beginning of the one giving best results at Tkþ2 etc.)
The number of following detection points that are taken into ac-
count is large for time slices near the beginning and small near
the end of the acquisition time. This kind of asymmetry is not ta-
ken into account in periodic decoupling sequences and in conven-
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tional iterative schemes of pulse sequence construction and it is
interesting to compare the tracking-based optimization of decou-
pling sequences with optimizations based on a desirable effective
Hamiltonian. The effective (or average) Hamiltonian approach
[23,55] allows one to optimize decoupling sequences based on a
relatively small number of pulse sequence parameters correspond-
ing to a cyclic basis sequence. However, in practice the actual effec-
tive Hamiltonian created by a given basis sequence of finite
duration can only approximate the desired effective Hamiltonian.
The effects of the remaining error terms accumulate coherently
for periodically repeated basis sequences. Without the availability
of an efficient tracking algorithm, this problem has previously trig-
gered the development of schemes, where deterministic decou-
pling sequences are embedded in stochastic ones, in order to
achieve efficient decoupling on short and long time scales [59–
61]. Also, depending on the kind of remaining error terms in the
effective Hamiltonian, their effect can be more or less detrimental,
and in spectroscopic applications it is therefore preferable to di-
rectly optimize for the desired evolution of the density operator,
rather than trying to approach a desired effective Hamiltonian.
Still, it is instructive to use concepts from average Hamiltonian
theory [23] to analyze aspects of tracking-based decoupling in
the Supplementary material, the detailed time-dependence of the
toggling frame defined by the TRACK-1 sequence is shown, demon-
strating that TRACK-1 consists of a series of inversion elements
that average the toggling frame coupling term to zero.

The TRACK-1 sequence was optimized for typical system
parameters of in vivo applications, in order to demonstrate the pre-
sented spin-tracking approach. Although the TRACK-1 sequence
was specifically optimized for a dwell time DT of 1 ms, the se-
quence also works well for shorter dwell times (and correspond-
ingly larger spectral widths), as discussed in the previous section.
The optimization criteria can easily be modified to match the
experimental constraints of any given application, such as the off-
set range or the experimentally determined distribution of rf sca-
lings. It is expected that the tracking approach can also be
applied to broadband decoupling in situations with less restricted
rf power constraints, such as in protein spectroscopy at high mag-
netic fields. In the present study, the rf power of the decoupling se-
quence was limited by limiting the maximum rf amplitude umax,
resulting in decoupling sequences with constant rf amplitude that
are easy to implement and do not require linear amplifiers. Even
better decoupling performance may be possible by only limiting
the rf power (rather than the rf amplitude) as described in the ori-
ginal GRAPE paper [29] and as applied for rf power limited excita-
tion and inversion pulses [38].

The TRACK-1 sequence creates significantly smaller decoupling
sidebands compared to conventional decoupling sequences (c.f.
Fig. 6) although the suppression of decoupling sidebands was not
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explicitly included as an optimization criterion in the definition of
the overall quality factor U, which simply reflects the average
amplitude of the decoupled signals. If decoupling sidebands need
to be further reduced, this may be achieved by introducing a pen-
alty on modulations in the FID or by other approaches based on
multiple scans. The TRACK-1 sequence was optimized for a specific
heteronuclear J coupling constant of 140 Hz. However, simulations
show that the decoupling quality is relatively insensitive to a var-
iation of the coupling constant, although the decoupling quality
slightly increases with decreasing J and decreases with increasing
J, as expected. If necessary, increased robustness with respect to
variations of J coupling constants in a given range can be explicitly
taken into account in the optimization by a straight-forward gen-
eralization of the overall quality factor U, c.f. Eq. (14). In applica-
tions where only relatively small long-range coupling constants
are expected, decoupling sequences should be specifically opti-
mized for these coupling constants. Similarly, robustness with re-
spect to variations of relaxation times could be explicitly
included as an optimization criterion if necessary. In the demon-
stration example considered here, the operators Ix, 2IySx, 2IySy,
2IySz were assumed to have identical relaxation rates, reflecting
T2 (or T�2). In many situations, this is a reasonable approximation,
but as pointed out above, a full relaxation matrix treatment can
be applied if this approximation is not valid (c.f. Appendix 1).

Although it is possible to extend the presented tracking-based
approach to more complicated spin systems, here we focused on
the simple case of an isolated pair of two heteronuclear spins
1/2, labeled I and S (corresponding e.g. to 1H and 13C), where the
decoupling sequence is applied to spin S. This setting also applies
to 13C decoupling of methylene ðCH2Þ and methyl ðCH3Þ groups,
corresponding to I2S and I3S spin systems. In this case, each spin
I is coupled only to a single spin S and additional S� I0 couplings
commute with the Hamiltonian of Eq. (6). The same is true for
additional homonuclear I � I0 couplings in the weak coupling limit
[65,66]. In addition to heteronuclear decoupling in liquid-state
NMR, the tracking-based pulse sequences are expected to find fur-
ther applications in spectroscopy and quantum information pro-
cessing [59–64], such as heteronuclear decoupling in solid-state
NMR in the presence of magic angle sample spinning and homonu-
clear decoupling.
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Appendix 1. Gradient for the optimization of decoupling
sequences using a full relaxation matrix approach

In general, the evolution of the density operator qðtmÞ after the
mth time slice of the decoupling sequence (c.f. Fig. 1) can be calcu-
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lated using a full relaxation matrix treatment and the resulting gra-
dient for the optimization of decoupling sequences is summarized
here. For an arbitrary initial density operator qðt0Þ corresponding
to the superket q̂ðt0Þ [55], the density operator (in superket form)
at time tm is given by

q̂ðtmÞ ¼ bLm . . . bL1 q̂ðt0Þ; ð23Þ

with

bLn ¼ exp �i cH0
n þ bC� �

Dt
n o

; ð24Þ

where �i cH0
n þ bC is the Liouville superoperator, cH0

n is the Hamil-
ton superoperator during the nth time slice and bC is the relaxation
superoperator. Hence, the signal amplitude sk at time point
Tk ¼ kDT ¼ kMDt ¼ tkM can be expressed as

sk ¼ hbCðTkÞ j bLkM . . . bL1 q̂ðt0Þi

¼ bLyjþ1 . . . bLykM
bCðTkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k̂kðtjÞ

bLj . . . bL1 q̂ðt0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
q̂ðtjÞ

�������
+*
; ð25Þ

with bCðTkÞ ¼ bIx and t0 6 tj 6 tkM ¼ Tk.
In complete analogy to the derivation in [29], to first order in Dt

we find

dsk

duaðjÞ
¼ �i 2p�Dt hkkðtjÞ j ½Sa;qðtjÞ�i; ð26Þ

where a ¼ x or y. According to Eq. (13), the quality factor for decou-
pling representing the signal amplitude of a decoupled resonance
line for a rf scaling � and offset mS is given by

/ð�; mSÞ ¼
1

N þ 1

XN

k¼0

sk: ð27Þ

Now we are interested to calculate the effect on the quality factor
/ð�; mSÞ if the control amplitudes uxðjÞ or uyðjÞ are varied in the jth
time slice, i.e. between the time points tj�1 and tj. This time slice
is located between the detection points Tl and Tlþ1, where
l ¼ bj=Mc is the truncated value (also called floor function or inte-
gral value) of the ratio j=M, i.e. the number of complete intervals
DT between the time points t0 and tj. Note that the controls uxðjÞ
or uyðjÞ only have an effect on the detected signal sk for
k > l ¼ bj=Mc.

Hence, to first order in Dt, we find

d/ð�; mSÞ
duaðjÞ

¼ 1
N þ 1

XN

k¼1

dsk

duaðjÞ
¼ 1

N þ 1

X
k>l

dsk

duaðjÞ

¼ i 2p�Dt
1

N þ 1

X
k>l

hkkðtjÞ j ½Sa;qðtjÞ�i

¼ i 2p�Dt
1

N þ 1

X
k>l

hSa j ½qðtjÞ; kkðtjÞ�i; ð28Þ

where in the last line we used the fact that the operators Sx and Sy

are Hermitian and also that the costate operators kkðtjÞ are Hermi-
tian for Hermitian target operators CðTkÞ.

Appendix 2. Gradient for the optimization of decoupling for a
simple relaxation model

If all elements of the density operator have the same relaxation
rate j, the density operator at time tm is simply given by

qðtmÞ ¼ expf�j tmg q0ðtmÞ; ð29Þ

where
q0ðtmÞ ¼ Um . . . U1 qðt0Þ Uy1 . . . Uym; ð30Þ

is the density operator at time tm in the absence of relaxation. The
propagator Un for the nth time slice is given by

Un ¼ expf�i Dt H0
ng; ð31Þ

where

H0
n ¼HS

off þHIS
J þ 2p � ðuxðnÞSx þ uyðnÞSyÞ; ð32Þ

and uxðnÞ and uyðnÞ are the constant control amplitudes during this
time slice. The signal amplitude sk for time point
Tk ¼ kDT ¼ kMDt ¼ tkM is given by

sk¼expf�jTkg hCðTkÞ jUkM ...U1 qðt0ÞUy1 ...UykMi

¼expf�jTkg Uyjþ1 ...UykM CðTkÞUkM ...Ujþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k0kðtjÞ

Uj ...U1 qðt0ÞUy1 ...Uyj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q0 ðtjÞ

��������
+*
;

ð33Þ

where CðTkÞ ¼ Ix and t0 6 tj 6 tkM ¼ Tk.
In this case, to first order in Dt the gradient dsk=duaðjÞ is given by

dsk

duaðjÞ
¼ �i 2p�Dt expf�j Tkg k0kðtjÞ Sa;q0ðtjÞ

� ���� �
; ð34Þ

where a ¼ x or y. Now we want to calculate the effect on the quality
factor /ð�; mSÞ, c.f. Eqs. (13) and (31) if the control amplitude uxðjÞ or
uyðjÞ are varied in the jth time slice, i.e. between the time points tj�1

and tj. This time slice is located between the detection points Tl and
Tlþ1, where l ¼ bj=Mc is the truncated value of the ratio j=M, i.e. the
number of complete intervals DT between the time points t0 and tj.
In analogy to the derivation in Appendix 1, to first order in Dt, we
find

d/ð�; mSÞ
duaðjÞ

¼ 1
N þ 1

X
k>l

dsk

duaðjÞ

¼ i 2p�Dt
1

N þ 1
�
X
k>l

expf�j Tkg k0kðtjÞ Sa;q0ðtjÞ
� ���� �

¼ i 2p�Dt
1

N þ 1
�
X
k>l

expf�j Tkg Sa q0ðtjÞ; k0kðtjÞ
� ���� �

: ð35Þ
Appendix 3. Efficient calculation of ðtjÞ

The definition (c.f. Eq. (18)) of

KðtjÞ ¼
X
k>l

expf�j Tkg k0kðtjÞ; ð36Þ

appears to imply that it is necessary to calculate N unitary back-
ward evolutions of the costate operators kkðtjÞ between the time
points Tk and t0 in order to calculate KðtjÞ for all time points
t0 6 tj 6 TN . However, only a single unitary backward evolution is
required between TN and T0 by taking advantage of the fact that
for any unitary transformationX

k

UAkUy ¼ U
X

k

Ak

 !
Uy: ð37Þ

Using the definition of k0kðtjÞ (c.f. Eq. (17)), KðtjÞ can be written as

KðtjÞ ¼
X
k>l

expf�j Tkg Uyjþ1 . . . UykM CðTkÞ UkM . . . Ujþ1: ð38Þ
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Between two time points Ti ¼ tiM and Ti�1 ¼ tði�1ÞM , the index j of the
time slices runs from fiMg to fði� 1ÞM þ 1g and l ¼ bj=Mc ¼ ði� 1Þ
is constant. The condition k > l ¼ ði� 1Þ in the sum of Eq. (38) im-
plies that we only need to calculate the backward evolution of the
operators kiðtjÞ, . . . kNðtjÞ and for each time slice Dt the unitary trans-
formations are identical. As a result, for a given KðtjÞ we can calcu-
late Kðtj�1Þ ¼ Kðtj � DtÞ by

Kðtj � 1Þ ¼

Uyj KðtjÞUj

if bj=Mc ¼ bðj� 1Þ=Mc
Uyj KðtjÞUj þ Cbj=Mc expf�j Tbj=Mcg

if bj=Mc > bðj� 1Þ=Mc

8>>>><>>>>: : ð39Þ

where Cbj=Mc ¼ k0bj=McðTbj=McÞ, which in the case of decoupling is iden-
tical to Ix. With

KðTNÞ ¼ kN expf�j TNg; ð40Þ

as a starting point, the operator KðtjÞ can iteratively be calculated
using Eq. (39) for all time points tj between TN ¼ tNM and T0.

Appendix 4. Reduced Liouville space for decoupling simulation
and optimization

As discussed in the theory section, HI
off commutes with the

terms HS
off , H

IS
J , and HS

rf ðtÞ. Hence the offset effect of spin I can
be separated and without loss of generality, it is sufficient to con-
sider the simplified Hamiltonian

H0ðtÞ ¼HS
off þHIS

J þHS
rf ðtÞ; ð41Þ

for the simulation and optimization of heteronuclear decoupling se-
quences, i.e. spin I can be assumed to be on resonance. Also without
loss of generality, we assume the initial density operator to be

qð0Þ ¼ Ix: ð42Þ

In the absence of relaxation effects, the initial density operator
qð0Þ ¼ Ix can only evolve to the operators 2IySx, 2IySy, 2IySz under
the action of H0ðtÞ, i.e. the dynamics are restricted to the four-
dimensional subspace of the complete 15-dimensional Liouville
space [56–58]. Even in the presence of relaxation, the dynamics
are limited to this subspace if cross-relaxation to other operators
can be neglected. In analogy to the three-dimensional Bloch vector
representation of the density operator for a single uncoupled spin,
the vector components of which are proportional to the expectation
values of Ix, Iy, and Iz, we can combine the expectation values of the
terms 2IySx, 2IySy, 2IySz, and Ix to form the elements of a real, four-
dimensional reduced state vector ~q that represents the relevant
terms of the density operator for the simulation and optimization
of heteronuclear decoupling sequences:

~q ¼

qx

qy

qz

qe

0BBB@
1CCCA ¼

Trfq 2IySxg
Trfq 2IySyg
Trfq 2IySzg

Trfq Ixg

0BBB@
1CCCA; ð43Þ

and the initial reduced state vector corresponding to the density
operator qðt0Þ ¼ Ix is given by ~qðt0Þ ¼ ð0001ÞT .

For the simple relaxation model considered in the main text and
in Appendix 2, the terms 2IySx, 2IySy (corresponding to mixtures of
zero and double quantum coherence), 2IySz (anti-phase coherence
of spin I), and Ix (in-phase coherence of spin I) are assumed to have
similar relaxation rates, which can be approximated by a uniform
relaxation rate j. In this case, the reduced state vector at a time
point tm is simply given by

~qðtmÞ ¼ expf�j tmg ~q0ðtmÞ; ð44Þ

where
~q0ðtmÞ ¼ Um . . . U1 ~qðt0Þ; ð45Þ

is the corresponding four-dimensional reduced state vector at time
tm in the absence of relaxation. The matrix elements of the general-
ized rotation matrices Un corresponding to the propagator for the
nth time slice are explicitly given in Supplementary material (see
also [56–58] for an equivalent representation of the propagators).

We also define the reduced costate vectors ~kk as

~kk ¼

kkx

kky

kkz

kke

0BBB@
1CCCA ¼

Trfkk 2IySxg
Trfkk 2IySyg
Trfkk 2IySzg

Trfkk Ixg

0BBB@
1CCCA; ð46Þ

and the vectors ~kkðTkÞ corresponding to the costates
kkðTkÞ ¼ CðTkÞ ¼ Ix are given by ~kkðTkÞ ¼ ð0001ÞT . In the absence
of relaxation, the reduced state vector ~k0kðtmÞ at time point tm 6 tk

is given by

~k0kðtmÞ ¼ UT
mþ1 . . . UT

k
~kkðTkÞ; ð47Þ

where UT
n ¼ U�1

n is the transpose of Un.
With the reduced state vector ~q0 and the costate vectors ~k0k at

each time point tj, to first order in Dt the derivatives dsk=duaðjÞ
can be calculated in a straight-forward way based on Eq. (34):

dsk

duxðjÞ
¼ 2p�Dt expf�j Tkg q0yðtjÞk0kzðtjÞ � q0zðtjÞk0kyðtjÞ

� �
; ð48Þ

and

dsk

duyðjÞ
¼ 2p�Dt expf�j Tkg q0zðtjÞk0kxðtjÞ � q0xðtjÞk0kzðtjÞ

� 

: ð49Þ

Based on Eqs. (15), (48), and (49), the gradient d/ð�; mSÞ=duaðjÞ for
0 6 j 6 MN and a ¼ x or y is given by

d/ð�; mSÞ
duxðjÞ

¼ 2p�Dt
1

N þ 1
q0yðtjÞKzðtjÞ � q0zðtjÞKyðtjÞ
� �

; ð50Þ

and

d/ð�; mSÞ
duyðjÞ

¼ 2p�Dt
1

N þ 1
q0zðtjÞKxðtjÞ � q0xðtjÞKzðtjÞ
� 


: ð51Þ

The required vectors ~q0ðtjÞ and ~KðtjÞ can be obtained by one forward
evolution of the reduced state vector ~q0ðtjÞ (see Eq. (45)) and by one
backward evolution of the vector ~KðtjÞ, starting from
~KðTNÞ¼expf�j TNg~kðTNÞ¼expf�j TNg~CN¼expf�j TNgð0;0; 0;1ÞT .
In analogy to Appendix 3, for each time slice Dt, the backward evo-
lution of ~KðtnÞ can efficiently be calculated by

~Kðtn � 1Þ ¼

UT
j
~KðtnÞ

if bn=Mc ¼ bðn� 1Þ=Mc
UT

n
~KðtnÞ þ~Cbn=Mc expf�j Tbn=Mcg

if bn=Mc > bðn� 1Þ=Mc

8>>>><>>>>: ; ð52Þ

where ~Cbn=Mc ¼~kbn=McðTbn=McÞ, which in the case of decoupling is
identical to ð0;0;0;1ÞT .

Appendix E. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jmr.2009.07.024.
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